

Design Approaches for Stealthy Probing Mechanisms

in Battlefield Networks

by Shriram Ganesh, Maitreya Natu, Adarshpal Sethi,

Rommie Hardy, and Richard Gopaul

ARL-RP-0227 September 2008

A reprint from the Proceedings of the Milcom conference,
San Diego, CA, November 17-19, 2008.

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-RP-0227 September 2008

Design Approaches for Stealthy Probing Mechanisms
in Battlefield Networks

Shriram Ganesh, Maitreya Natu, and Adarshpal Sethi
University of Delaware

Rommie Hardy and Richard Gopaul

Computational and Information Sciences Directorate, ARL

A reprint from the Proceedings of the Milcom conference,
San Diego, CA, November 17-19, 2008.

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services,
Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2008

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Design Approaches for Stealthy Probing Mechanisms in Battlefield Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Shriram Ganesh, Maitreya Natu, Adarshpal Sethi, Rommie Hardy, and
Richard Gopaul

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-NT
2800 Powder Mill Road
Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-RP-0227

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

A reprint from the Proceedings of the Milcom conference, San Diego, CA, November 17-19, 2008.

14. ABSTRACT

Various approaches have been proposed in the past for monitoring a network to diagnose failures and performance bottlenecks. One such
approach for efficient and effective monitoring is probing. Probes such as ICMP pings are an effective tool for detecting network nodes that
have been compromised by an attacker who tries to delay or drop traffic passing through the captured node. However, an intelligent attacker
may evade detection by giving preferential treatment to probe traffic. This is usually possible because probe packets have a different format
from regular application packets and are easily distinguishable. Hence, it is important to probe in a stealthy manner so as to avoid
identification of probes by an attacker and to ensure the collection of accurate system health statistics. In this report, we review design
approaches for generating stealthy probes and describe various possible mechanisms that can be used for such a design. These approaches are
evaluated according to the design criteria and we identify what may be feasible solutions for stealthy probing in battlefield ad-hoc wireless
networks.
15. SUBJECT TERMS

Stealthy, probing, packet stamping

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

12

19a. NAME OF RESPONSIBLE PERSON

Rommie Hardy
a. REPORT

U

b. ABSTRACT

 U

c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

(301) 394-1189
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI St

1

DESIGN APPROACHES FOR STEALTHY PROBING MECHANISMS
 IN BATTLEFIELD NETWORKS

 Shriram Ganesh, Maitreya Natu, Adarshpal Sethi Richard Gopaul, Rommie Hardy
 University of Delaware US Army Research Laboratory
 {ganesh,natu,sethi}@cis.udel.edu {rgopaul,rhardy}@arl.army.mil

ABSTRACT*

Various approaches have been proposed in the

past for monitoring a network to diagnose failures and
performance bottlenecks. One such approach for efficient
and effective monitoring is probing. Probes such as ICMP
pings are an effective tool for detecting network nodes that
have been compromised by an attacker who tries to delay
or drop traffic passing through the captured node.
However an intelligent attacker may evade detection by
giving preferential treatment to probe traffic. This is
usually possible because probe packets have a different
format from regular application packets and are easily
distinguishable. Hence, it is important to probe in a
stealthy manner so as to avoid identification of probes by
an attacker and to ensure the collection of accurate system
health statistics. In this paper, we review design
approaches for generating stealthy probes and describe
various possible mechanisms that can be used for such a
design. These approaches are evaluated according to the
design criteria and we identify what may be feasible
solutions for stealthy probing in battlefield ad-hoc wireless
networks.

1. INTRODUCTION

With the objective of providing seamless end-to-end
services, various approaches have been proposed in the
past for monitoring a network to diagnose failures and
performance bottlenecks. One promising approach for
efficient and effective monitoring is probing [1,2,3].
Probing based approaches involve sending test transactions
over the network to monitor the health and performance of
various network elements. Success or failure of these test
transactions, called probes, depends on the success or

* Prepared through collaborative participation in the
Communications and Networks Consortium sponsored by
the U.S. Army Research Laboratory under the
Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0011. The U.S. Government is
authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright
notation thereon.

failure of the network elements being tested. Probes can be
of various types such as one-packet probes [4], packet-pair
probes [5, 6], packet-train probes [7], etc. Probes are used
to monitor a wide array of performance parameters
including delay, loss, available bandwidth, traffic
composition, routing behavior, etc. Currently, pings and
traceroutes are the most popular probing tools to detect
network availability. Examples of various other probe uses
include Jacobson’s [4] one-packet probes in pathchar to
estimate link bandwidth from round trip delays of different
sized packets sent to successive routers along a path.
Skitter [8] uses traceroute like probes for tracking Internet
topology. PathChirp [9] uses packet-pair probes for
estimating available bandwidth on a path.

Most probing methods employ probes that do not resemble
non-probe traffic generated by regular applications. Such
probes might experience different network conditions as
compared to regular application traffic. There could be
various reasons for the different treatment of probe traffic.
Probes that require intermediate nodes to do processing
(e.g. traceroutes) might be given lower priority by the
routers. End-hosts might block certain protocols (IPMP
[10], ICMP [11]) used by probe traffic.

Another more daunting possibility is the identification of
probe traffic by a malicious entity within the network that
creates the illusion of a healthy network service for the
probe traffic. Consider an attacker that probabilistically
drops or delays packets of regular application traffic. Such
an attacker can manage to stay undetected by giving
preferential treatment to probes to keep the probe stations
unaware of the malicious drops and delays along the probe
path. Another example could be of malicious routing [12].
Probes can be used to detect the inconsistency between the
advertised and actual routes for end-to-end paths affected
by an attack. However, if an attacker can identify the probe
traffic, it can treat probes in a different manner, possibly
allowing probes to pass through the correct routes, thus
avoiding detection by the probes.

2

Hence, there is a need for methods to conduct probing in a
stealthy manner preventing the intermediate malicious
nodes from misleading the probing nodes by treating the
probe packets differently from normal packets. We refer to
this probing approach as Stealthy Probing. When probes
are made stealthy, the intruders are not able to distinguish
probe traffic from regular application traffic. So they drop
both probe as well as application traffic making it possible
for the probing nodes to detect the presence of intrusion.

In this paper, we identify design issues for a mechanism to
generate stealthy probes. We also propose alternative
design strategies for probes that are similar to regular
application traffic but are constructed in such a manner
that only the sender and recipient of the probes can
distinguish the probe traffic from the application traffic.
We also will discuss various issues involved in
constructing the stealthy probes for a wireless network
environment and present possible design approaches for
implementing such probes. The main contribution of this
paper is that it advances the state of the art in stealthy
probing designs by proposing various approaches to the
solution of the problem. These approaches are evaluated
according to the design criteria and we identify what may
be feasible solutions for stealthy probing in battlefield ad-
hoc wireless networks.

2. RELATED WORK

In the past, very little work has been done on stealthy
probing. Avramopoulos and Rexford [13] proposed a
lightweight data plane approach by creating an encrypted
tunnel between two routers and diverting both probe and
regular traffic into the tunnel to make probe and regular
traffic indistinguishable. The secure traceroute proposed
by Padmanabhan and Simon [14] securely traces the path
of the existing traffic, thus preventing the routers from
misleading specialized traceroute packets by treating them
differently from normal traffic packets. We presented a
detailed survey of past approaches on stealthy probing in
[15].

There are several limitations in the stealthy probing
research done in the past. Many proposed approaches
demand heavy instrumentation or added processing
overhead at the intermediate nodes. The attackers may
manifest themselves in innovative ways, defeating many
proposed strategies that provide defense only against
specific attacks. Many proposed defenses become
infeasible and ineffective due to the lack of deployment
incentive at various areas of the network. The growing use
of wireless networks opens another array of vulnerabilities
to address while developing stealthy probing strategies.
In the past, packet stamping has been used by many
researchers for developing defense mechanisms against

denial of service attacks. Yaar et al. [16] proposed StackPi,
where a 16-bit path identifier (Pi) is assigned to each
packet and is stored in the IP identification field. The Pi-
marks are generated as the packet flows along its path to
its destination. All packets traversing the same path
receive the same marking. Yang et al. [17] also proposed a
mechanism where the sender first acquires a token from
the destination, representing the capability to send, and
then stamps the packets with the capability. These packets
are verified at the intermediate verification points on the
way to the destination for the presence of the valid
capability. A capability is valid for a limited time and
packet count, and needs to be renewed for further
communication. Capabilities are generated by the
destination using a chain of one-way hash functions.
Careful design and evaluation of a more complete
capability-based architecture, called Traffic Validation
Architecture (TVA), was proposed by Yang et al. [17].
Another capability-based mechanism was proposed by
Yaar et al. [18], where routers provide path specific
information that is aggregated by the destination to
generate a capability. The sender inserts this capability in
the subsequent packets. Routers on the way verify the
capability for the correctness of their part of the
information in the aggregated capability. Routers change
their capability marking periodically and the new
capability value is communicated to the sender. Routers
keep a window of keys as valid at any one time. The
packet stamping approach most relevant to our approach
was proposed by Wang et al. [19], which uses an access
control mechanism, called Easy-pass, to prevent
unauthorized access to network resources. A unique pass is
attached to each legitimate IP packet, and this pass is
verified by an ISP edge router to provide access to the
protected network resource.

We propose to develop stealthy probes by stamping the
packets in such a fashion that the probe traffic is
indistinguishable from the regular traffic to all nodes not
knowing the legitimate stamp sequence. Like the proposed
distributed denial of service (DDoS) defense mechanisms,
stealthy probing requires dynamically changing stamps,
insertion of stamps at the source, and verification at the
destination. However, unlike the stamping mechanism
used for the DDoS defense mechanisms mentioned above,
routers en-route cannot be used to generate and/or validate
the stamps. Also, unlike the defense mechanism, only the
probe packets are stamped with the capabilities.
Furthermore, the stamping needs to be stealthy to prevent
unauthorized nodes from identifying stamped packets from
unstamped packets.

3

3. DESIGN ISSUES

Various design issues need to be addressed while
developing a stealthy probing mechanism in a battlefield
ad-hoc wireless network. In this section, we describe these
issues and explain the rationale behind our choice of
system design.

3.1 How to send probes

Probes can be sent separately from the regular traffic or
can be piggybacked on the regular application traffic.
There are various design issues involved in both
approaches to keep the probes stealthy.

As shown in Figure 1a, one design approach is to develop
probes resembling application traffic on the desired probe
path and insert the probe packets within the stream of
application packets giving the impression that probe
packets are actual application traffic. Thus, probe packets
need to be designed to have the same protocol and port
numbers, and consistent sequence and acknowledgement
numbers as the rest of the application traffic. A
challenging task is to maintain consistent sequence and
acknowledgement numbers between the probe and
application packets as well as filtering and extracting
probe traffic from the real application traffic.

Another approach to inserting probe traffic stealthily could
be to piggyback probe traffic over the already existing
application traffic as shown in Figure 1b. In this approach,
instead of creating new packets, probe information is
embedded into the application packets that are already
being sent over the probe path. This approach avoids the
problem of developing new probe packets and making
them consistent with the regular application traffic.
However, care needs to be taken while embedding the
probe packets on the application packets to ensure that the
application packets (header and data) stay consistent with

the regular application traffic. There is also a need for
some technique to extract the probe information from
application packets at the destination. A drawback of this
approach is that it depends on the availability of existing
application traffic to probe a certain network path. Thus,
there still is a need for developing separate probe packets
resembling application traffic to be sent on a probe path
when regular application traffic is infrequent.

3.2 How to distinguish probe traffic from regular
traffic

In the two approaches described previously, when solving
the problem of making probes indistinguishable from
regular application traffic, care needs to be taken to ensure
that the probes are still distinguishable at probe endpoints;
otherwise, the destination will not be able to identify and
extract the probe information from the stream of
application packets. If the probes are sent as separate
packets, a mechanism is needed at the destination node to
identify the probe packets from the application packets,
and likewise, when a response is generated, a similar
mechanism is needed for the source to identify the probe
responses. Similarly, if the probes/responses are
piggybacked over the application packets, the destination
node must be able to identify the application packets that
contain piggybacked probe information. Once such
packets are identified, the destination node needs a way to
extract the piggybacked probe information from the
application packets. It is also important that this ability to
distinguish probes from application packets be limited to
the source and destination nodes. Intermediate nodes must
not be able to make this distinction; otherwise, the probes
will not be stealthy. Furthermore, since various sources
may need to probe various destinations, any of the network
nodes may be potential probe end-points. For this reason,
the scheme cannot rely on secrecy of design to provide
stealthiness. In subsections 3.2.1–3.2.4, we discuss various
ways to identify stealthy probes at the probing end-points.

4

3.2.1 Using pseudo-random sequence

One possible approach could be to use a pseudo-random
sequence to insert probe information in the application
traffic. The two end-nodes pre-agree on the seed s to
generate the pseudo-random sequence. The two end-nodes
then generate the pseudo-random sequence starting with
the seed s and insert the probe information into the
appropriate application packets based upon this sequence
as shown in Figure 2. Figure 2a shows a naïve scheme in
which probes are inserted in regularly spaced packets,
while Figure 2b shows how the pseudo-random sequence
is used to select the packets that contain probes. Probes are
normally piggybacked on the application packets. In case
of unavailability of application traffic, independent probe
packets are sent making the packets resemble application
traffic. Each probe packet (piggybacked or independent)
contains information about the location of probe
information at a predefined location in the packet. After
identification of the probe packet based on the pseudo-
random sequence, the destination node uses this
information to locate the probe information within the
packet. This approach is simple and easy to implement;
however, it is vulnerable to packet losses and reordering. If
some packets in the sequence are lost or are delayed so
they reach the destination after packets transmitted later,
the destination will not be able to identify the probes
correctly. For this reason, this scheme should only be used
for applications that use a reliable transport mechanism
such as transmission control protocol (TCP).

3.2.2 Using packet stamping

Another implementation approach is to stamp the probe
packets with a ticket that is known to both the source and
destination nodes. This approach, unlike the previous
approach using pseudo-random sequence, is robust to loss,
delay, and reordering of packets. As in the previous
approach, in the presence of application traffic the probes
are piggybacked over the application packets. In the
absence of application traffic, separate probe packets are
sent making the packets resemble the regular application
packets. In both cases, the packet that contains a probe is
stamped by the currently valid stamp. The packet contains
the probe information at a predefined place in the packet,
and this information is used by the destination node to
extract the probe out of the received packet.

The packet stamps for this purpose must have the
following properties:
 Inconspicuous: Stamping should be inconspicuous to

prevent detection of stamps and consequently the probes
by the attacker. Thus, stamps should not require use of

additional fields in the network packets that are not used
by regular application packets. One approach to meet
this requirement is to use a header field of some layer in
the existing network stack, e.g., the identification field,
or type of service field in the IP header. Furthermore,
packets of the regular network traffic should also be
stamped with random values to avoid detection.

 Dynamically changing: Using the same stamp value for
all probe packets reveals a traffic pattern that can be
used by the attacker to detect probe traffic; hence,
stamps should be changed dynamically.

 Hard to predict: Stamps should be changed in such a
manner that the attacker cannot infer any pattern in the
changed stamps. Identification of any such pattern can
allow the attacker to predict the next stamp and thus
detect the next probe packet.

 Lightweight: The stamp generation, embedding, and
verification process should not incur significant
computational overhead or network traffic.

 Robust: Stamping verification should be robust to loss
and reordering.

3.2.3 Generation of a series of stamps

In this section, we present approaches to dynamically
change the stamp values, while preserving the proposed
stamp properties. The objective here is to be able to
change the stamp dynamically, at the same time making
both communication ends aware of the changed stamp.
While changing the stamp, it is important to make the next
stamp value hard to predict to prevent an attacker from
identifying the stamp and thus identifying the probes. In
order to change the stamp value periodically, we propose
two approaches.

In the first approach presented in Figure 3a, the source and
destination node agree upon a seed s and a key k. Starting
with the first stamp s, both ends build a series of stamp
values by applying a function f() on the previous stamp
value. The sender encrypts its stamp value using a function

5

g() and the key k. The receiver decrypts the stamps by
applying the inverse hash function g-1() with the key k. The
receiver then verifies the decrypted stamp value with the
stamp series computed at its end using the function f().

We present another approach shown in Figure 3b, which is
based on dynamically changing packet stamps using a
chain of one-way hash functions. As in the previous
approach, the two end-nodes agree on the initial seed s and
the hash key k. The client then builds a chain of values by
repeatedly applying the hash function on the previous
value. Thus, starting with a seed s, the client builds a series
of values, h(s,k), h(h(s,k)), h(h(h(s,k))), and so on. The
sender then uses these stamps in the reverse order in this
sequence, thus using the stamp h(h(h(s,k))) before h(h(s,k))
before h(s,k). Once the list is exhausted, the sender restarts
with the last element of the list as the next stamp. The
destination stores the initial seed s and the hash-key k. The
destination performs multiple hash operations on the seed s
to obtain the currently active stamp and compares the
incoming packets with the desired stamp value to identify
probes.

3.2.4 Changing stamp value

For implementation of a dynamically changing stamping
mechanism, the life-time of a stamp could be time-based
[18] or traffic-based [17]. That is, the stamps could be
changed after expiration of a certain time interval or after
exchange of certain number of packets. In the past,
researchers have used both approaches while proposing
dynamically changing stamps. Time-based stamps avoid
the overhead of maintaining packet counts required for
traffic-based stamps. However, as time-based stamps allow
a client to use the stamp to send as many packets as

desired within the stamp life-time, this approach could
reveal a traffic pattern if large amounts of probes are sent
within the stamp life-time.

The process of updating the stamp at both sender and
receiver can be done in several ways; we discuss two of
these ways. (1) Both sender and receiver can mutually
agree on an update mechanism (time-based or traffic-
based) and individually update the stamp value. To update
the stamps after a certain time interval, the sender and
receiver need to have synchronized clocks. For traffic-
based stamp update, sender and receiver need to maintain
traffic statistics and also address the scenario of dropped
and delayed packets. (2) Another approach to updating the
stamp value is to make one node decide the next stamp
value and inform the other node of the changed stamp. For
instance, the receiver node can inform the sender of the
new stamp after expiration of certain time interval and/or
after receiving certain number of probe packets. This
mechanism, however, involves additional communication
overhead between the two end-points.

4. PROPOSED SYSTEM DESIGN

In this section we propose a design for implementation of
stealthy probing. We propose to generate probe traffic that
looks similar to the application traffic; however, we stamp
the probe packets with stamps known only to the sender
and receiver. Probe traffic is identified at the receiver by
identifying the valid stamps. The generation and insertion
of stamps is done in such a manner that attackers cannot
identify probe packets as being any different from regular
application packets. We first discuss the procedure of
sending and receiving probes, and then we present our
approach to generate, embed, and verify stamps.

6

4.1 Generation of probe traffic

Probe traffic should be designed such that the probe
packets look similar to the application packets commonly
present in the application traffic in the network under
consideration. In the scheme proposed here, we consider
HTTP traffic to be present as regular application traffic in
the network, and hence, disguise the probe packets to look
like HTTP packets. Thus, the probing application program
generates probe packets similar to HTTP packets and
inserts a stamp in the IP header. We use a 16-bit stamp
and place it in the IP identification field of the IP header.
The IP identification field is used by the routers to identify
fragments of a packet during fragmentation. This is not a
problem because even if the packet is fragmented en-route,
the fragments would be reassembled by the IP layer at the
destination before the stealthy probing algorithm uses the
ID field to detect a received probe packet.

The receiver checks the received packets for valid stamps.
On identifying a packet with a valid stamp, the packet is
forwarded to the probing application. To avoid detection of
any specific pattern in the stamps inserted in the probe
packets, the stamps are changed for each packet and
regular application packets are also stamped with random
values that do not form valid stamps. Figure 4 presents the
steps involved in sending and receiving the probe packets,
showing a probing application sending and receiving
probes using UDP port 1600. The sender disguises probe
packets as HTTP packets, but inserts a stamp in the IP
identification field. The receiver, on observing a valid
stamp, extracts the probe part of the packet and forwards it
to the appropriate probe receiving application.

4.2 Stamping

We now present our approach to generating stamps. The
stamps are designed to have the following properties:

 Stamps are 16 bits long so that the stamp can be inserted

in the IP identification field.
 Stamps are made unique for each packet to avoid

detection of any pattern in the probe traffic.
 The change in the stamps is made difficult to predict.

We present two approaches of generating the stamp
sequence.

4.2.1 Approach 1: Sender and receiver independently
generate stamp sequence.

The sender and receiver exchange a secret k and an initial
seed s. As shown in Figure 3a, both sides then generate a
sequence of stamps using a function f(). This function
builds the new stamp from the previous stamp value. The
resulting stamp value is then encrypted using the secret k.
Each outgoing probe packet is stamped with a unique
stamp value encrypted in this manner.

Both the sender and receiver maintain a window of w
stamps. These w stamps represent currently active stamps.
The sender uses the window to ensure that a random value
inserted as a stamp in the regular application packets is not
present as a stamp in the window. This check prevents a
regular application packet from being mistaken as a probe
packet by the receiver. The receiver maintains a window to
accept out-of-order probe packets.

4.2.2 Approach 2: Only receiver generates stamp
sequence

In the second approach, stamps are generated only at the
receiver. The receiver generates a sequence of stamps by
performing multiple iterations of a one-way hash function
and then using the last stamp in the sequence first. The
sender performs an initial handshake with the receiver to
obtain the first stamp and a secret k. One stamp is used for
multiple packets by the sender; however, to insert a
different value in the ID field for each probe packet, the
sender hashes the stamp with the secret k and some of the
packet content that changes with every packet but does not
change for a single packet from source to destination. One
example of such a field is the TCP sequence number.

7

The receiver performs a similar operation on the received
packet to verify the stamp and then updates the stamp
value after expiration of t seconds and updates the sender
with the new stamp. To accept out of order probe packets,
the receiver accepts packets with the current stamp or a
previous stamp value.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed various design approaches
for a mechanism to generate stealthy probes. We have also
discussed possible mechanisms for identification of probes
at probing endpoints. Finally, we have proposed a system
design and discussed how earlier approaches could be
applied to such a design. Our future work would be to look
at other possible system designs and to implement and test
their correctness and effectiveness in a wireless ad-hoc
battlefield environment.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the U.S. Army Research Laboratory or the U.S.
Government.

REFERENCES

[1] M. Brodie, I. Rish, and S. Ma. Optimizing probe
selection for fault localization. In DSOM-2001,
IFIP/IEEE International Workshop on Distributed
Systems Operations and Management, Nancy, France,
Oct. 2001.

[2] M. Natu and A.S. Sethi. Active probing approach for
fault localization in computer networks. In
E2EMON’06, Vancouver, Canada, 2006.

[3] I. Rish, M. Brodie, S. Ma, N. Odintsova, A.
Beygelzimer, G. Grabarnik, and K. Hernandez.
Adaptive diagnosis in distributed systems. IEEE
Transactions on Neural Networks, 6(5):1088–1109,
Sep. 2005.

[4] A.B. Downey. Using pathchar to estimate Internet link
characteristics. In ACM SIGCOMM, Cambridge, MA,
1999.

[5] J.C. Bolot. Characterizing end-to-end packet delay and
loss in the Internet. High Speed Networks, 2(3), 1993.

[6] R. L. Carter and M. E. Crovella. Measuring bottleneck
link speed in packet switched networks. Performance
Evaluation, 27 and 28:297–318, 1996.

[7] M. Jain and C. Dovrolis. End-to-end available
bandwidth: Measurement methodology, dynamics, and
relation with TCP throughput. In ACM SIGCOMM
2002, Pittsburgh, PA, Aug. 2002.

[8] B. Huffaker, D. Plummer, D. Moore, and K. Claffy.
Topology discovery by active probing. In Symposium
on Applications and the Internet, Nara, Japan, Jan.
2002.

[9] V.J. Ribeiro, R.H. Riedi, R.G. Baraniuk, J. Navratil,
and L. Cottrell. PathChirp: Efficient available
bandwidth estimation for network paths. In Passive
and Active Measurement Workshop, 2003.

[10] M.J. Luckie, A.J. McGregor, and H.W. Braun,
Towards improving packet probing techniques. In
Internet Measurement Workshop, 2001.

[11] J. Postel. Internet Control Message Protocol. Request
for Comment: 792, Sep. 1981.

[12] P. Kruus, D. Sterne, R. Gopaul, M. Heyman, B.
Rivera, P. Budulas, B. Luu, T. Johnson, and N.
Ivanic. In Band Wormholes and Countermeasures in
OLSR Networks. In SecureComm2006, Baltimore,
MD, Aug. 2006.

[13] I. Avramopoulos and J. Rexford. Stealth Probing:
Efficient Data-Plane Security for IP Routing. In Proc.
USENIX Annual Technical Conference, Boston, MA,
May 2006.

[14] V. Padmanabhan and D. Simon. Secure Traceroute to
Detect Faulty or Malicious Routing. In Proc. ACM
SIGCOMM HotNets Workshop, Oct. 2002.

[15] M. Natu, A.S. Sethi, R. Gopaul, and R. Hardy.
Survey of Techniques for Robust and Secure
Communication in Computer Networks. Technical
Report No. 2007/337, Dept. of Computer &
Information Sciences, University of Delaware,
Newark, DE, Dec. 2006.

[16] A. Yaar, A. Perrig, and D. Song. StackPi: New Packet
Marking and Filtering Mechanisms for DDoS and IP
Spoofing Defense. IEEE Journal on Selected Areas in
Communications, 24(10):1853-1863, Oct. 2006.

[17] X. Yang, D. Wetherall, and T. Anderson. A DoS-
Limiting Network Architecture. ACM SIGCOMM
Computer Communication Review, 34(4): 241-252,
2005.

[18] A. Yaar, A. Perrig, and D.X. Song. SIFF: A Stateless
Internet Flow Filter to Mitigate DDoS Flooding
Attacks. In IEEE Symposium on Security and
Privacy, 2004.

[19] H. Wang, A. Bose, M. El-Gendy, and K.G. Shin. IP
Easy-pass: a light-weight network-edge resource
access control. IEEE/ACM Transactions on
Networking, 13 (6), Dec. 2005.

8

No. of
Copies Organization

1 (PDF ADMNSTR
ONLY) DEFNS TECHL INFO CTR
 ATTN DTIC OCP (ELECTRONIC COPY)
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

1 CD US ARMY RSRCH LAB
 ATTN AMSRD ARL CI OK TP
 TECHL LIB T LANDFRIED
 BLDG 4600
 APG MD 21005-5066

7 HCs US ARMY RSRCH LAB
1 CD ATTN AMSRD ARL CI OK PE
 TECHL PUB (1 HC)
 ATTN AMSRD ARL CI OK TL
 TECHL LIB (1 HC)
 ATTN IMNE ALC IMS MAIL &
 RECORDS MGMT (1 HC)

ATTN AMSRD ARL CI NT
R HARDY (2 HC, 1 CD)
ATTN AMSRD ARL CI NT
B RIVERA (1 HC)
ATTN AMSRD ARL CI N
G RACINE (1 HC)
ADELPHI MD 20783-1197

Total: 10 (1 PDF, 7 HCs, 2 CDs)

